Интересные факты про линзы физика

Музей фактов

Интересные факты об оптике

Какой привычный предмет помогает смотреть сквозь непрозрачное матовое стекло?

Чтобы посмотреть сквозь стекло с матовой поверхностью, достаточно наклеить на него кусочек прозрачного скотча. Из-за неровностей матового стекла свет рассеивается, но клеевая сторона скотча сглаживает эти неровности, и в результате свет проходит как будто сквозь обычное стекло. Нужно добавить, что если поверхность матовая с двух сторон, этот трюк уже не сработает.

Почему радуга имеет форму дуги?

Солнечные лучи, проходя через капли дождя в воздухе, разлагаются в спектр, так как разные цвета спектра преломляются в каплях под разными углами. В результате формируется окружность — радуга, часть которой мы видим с земли в форме дуги, а центр окружности лежит на прямой, соединяющей наблюдателя с Солнцем, причём Солнце находится за спиной. Если свет в капле отражается два раза, то можно увидеть вторичную радугу.

Где в космосе можно увидеть улыбку Чеширского кота?

Астрономам известны так называемые кольца Эйнштейна — оптические иллюзии, возникающие из-за гравитационных линз. Линзой может выступать чёрная дыра или массивная галактика, расположенная прямо на линии между земным наблюдателем и менее массивной далёкой галактикой, свет которой мы и наблюдаем в виде кольца. Одно из таких колец учёные окрестили «улыбкой Чеширского кота».

Почему в приборах ночного видения всё окрашено в зелёные тона?

В традиционных приборах ночного видения (не тепловизорах) поступающий на линзы свет преобразуется в оттенки чёрного и белого, и, только попадая на фосфорный экран, приобретает зеленоватые тона. Зелёная гамма выбрана по двум причинам: во-первых, человеческий глаз наиболее восприимчив к волнам именно такой длины, а, во-вторых, она меньше других утомляет глаза при длительном воздействии. По той же причине были зелёными и ранние монохромные мониторы.

Какие позвоночные могут видеть одновременно над и под водой?

У рыб под названием четырёхглазки на самом деле два глаза, однако оба из них разделены горизонтальной перепонкой. Благодаря этому четырёхглазки могут плавать у самой поверхности воды и видеть как над, так и под водой — единственные из всех позвоночных. Не мешают такому зрению и разные коэффициенты преломления света в воздухе и воде: специально для этого верхняя и нижняя половинки глазных линз изогнуты по-разному.

Читайте также:  Телескоп задачи по оптике

Для чьей самообороны в 1984 году в СССР создали лазерный пистолет?

В 1984 году в СССР был разработан лазерный пистолет несмертельного действия. Он предназначался для самообороны космонавтов. Поражающее действие этого пистолета заключалось в выведении из строя чувствительных элементов оптических систем, в том числе глаз человека. А важным преимуществом по сравнению с обычным пистолетом в условиях невесомости было отсутствие отдачи. Сейчас лазерный пистолет является памятником науки и техники и экспонируется в музее истории Военной академии РВСН имени Петра Великого.

Почему насекомые бьются в светильники?

Насекомые ориентируется в полёте по свету. Они фиксируют источник — Солнце или Луну — и выдерживают постоянный угол между ним и своим курсом, принимая такое положение, при котором лучи освещают всегда одну и ту же сторону. Однако если лучи от небесных светил почти параллельны, то от искусственного источника света лучи расходятся радиально. И когда насекомое выбирает светильник для своего курса, то движется по спирали, постепенно приближаясь к нему.

Почему в радуге выделяют семь цветов?

Хотя многоцветный спектр радуги непрерывен, по традиции в нём выделяют 7 цветов. Считают, что первым выбрал это число Исаак Ньютон. Причём первоначально он различал только пять цветов — красный, жёлтый, зелёный, голубой и фиолетовый, о чём и написал в своей «Оптике». Но впоследствии, стремясь создать соответствие между числом цветов спектра и числом основных тонов музыкальной гаммы, Ньютон добавил ещё два цвета.

Источник

Физика. 11 класс

Линзы

Линза. Построение изображений в линзе

Необходимо запомнить

Простейшей оптической системой является линза.

Виды линз: выпуклые и вогнутые.

Физической моделью реальной линзы является тонкая линза.

Основные элементы и характеристики тонкой линзы: оптический центр, главная оптическая ось, побочная оптическая ось, фокус, фокусное расстояние, фокальная плоскость, оптическая сила.

Основное свойство линзы: световые лучи, исходящие из какой-либо точки предмета (источника), проходя через линзу, пересекаются в одной точке (изображении) независимо от того через какую часть линзы прошли. Для построения изображения точки, расположенной вне главной оптической оси линзы, можно пользоваться любыми двумя из трёх «удобных» лучей, ход которых через линзу известен:

— луч, проходящий через оптический центр;

— луч, падающий на линзу параллельно главной оптической оси;

— луч, проходящий через фокус.

Читайте также:  Как отличить подделку линз acuvue oasys

Чтобы построить изображение точки, расположенной на главной оптической оси, необходимо применить метод побочных осей: надо провести вспомогательную побочную оптическую ось и рассматривать данную точку как находящуюся вне проведенной оптической оси.

Собирающая линза может давать различные изображения в зависимости от того, на каком расстоянии d от линзы расположен предмет.

Для рассеивающей линзы положение предмета относительно линзы не имеет значения (изображение предмета в линзе всегда мнимое, прямое и уменьшенное).

Основные формулы и уравнения:

Оптическая сила линзы: $D= \pm \frac<1> $

Единица измерения оптической силы линзы 1 диоптрия (дптр).

Формула тонкой линзы: $\pm \frac<1>$=$\pm \frac<1> \pm \frac<1>$

Линейное увеличение: $Г=\frac$ или $Г=\frac$

При расчетах числовые значения действительных величин всегда подставляются со знаком «+», а мнимых со знаком «-».

Источник

Линзы в физике — виды, формулы и определения с примерами

На уроках природоведения вы. наверное, пользовались микроскопом. Кое-кто из ваших друзей (а может, и вы сами) имеет очки. Вероятнее всего, большинство из вас знакомы с биноклем, зрительной тру бой, телескопом. У всех этих приборов есть общее: их основной частью является линза.

Равные виды линз

Линзой (сферической*) называют прозрачное тело, ограниченное с двух сторон сферическими поверхностями (в частности, одна из поверхностей может быть плоскостью). По форме линзы делятся на выпуклые (рис. 3.50) и вогнутые (рис. 3.51).

Если толщина линзы d во много раз меньше радиусов

Обычно выпуклые линзы являются собирающими: параллельные лучи, которые падают на собирающую линзу, пройдя сквозь нее, пересекаются в одной точке (рис. 3.53).

Вогнутые линзы чаще всего бывают рассеивающими: параллельные лучи после прохождения сквозь рассеивающую линзу выходят расходящимся пучком (рис. 3.54).

Линзы также бывают цилиндрическими, но встречаются такие линзы редко.

Характеристики линз

Проведем прямую, которая проходит через центры сферических поверхностей, ограничивающих линзу. Эту прямую называют главной оптической осью линзы. Точку линзы, которая расположена на главной оптической оси и через которую луч света проходит, не изменяя своего направления, называют оптическим центром линзы (рис. 3.55). На рисунках оптический центр линзы обычно обозначают буквой О.

Точку, в которой собираются после преломления лучи, параллельные главной оптической оси собирающей линзы, называют действительным фокусом собирающей линзы (рис. 3.56).

Если пучок лучей, параллельных главной оптической оси, направить на рассеивающую линзу, то после преломления они выйдут расходящимся пучком.

Однако их продолжения соберутся в одной точке на главной оптической оси линзы (рис. 3.57). Эту точку называют мнимым фокусом рассеивающей линзы.

Читайте также:  Сечения профилей в dwg

На рисунках фокус линзы обозначают буквой F.

Расстояние от оптического центра линзы до фокуса называют фокусным расстоянием линзы.

Фокусное расстояние обозначается символом F и измеряется в метрах. Фокусное расстояние собирающей линзы договорились считать положительным (F>0), а рассеивающей — отрицательным (F 2F. Будем передвигать экран до тех пор, пока не увидим на нем четкое изображение пламени свечи. Чем оно отличается от изображения, которое мы увидим в зеркале, поместив перед ним эту же свечу? Во-первых, оно уменьшенное, во-вторых, перевернутое. Ио самое главное, что это изображение, в отличие от мнимого изображения в зеркале, реально существует. На экране концентрируется энергия света. Чувствительный термометр, помещенный в изображение пламени свечи, покажет повышение температуры. Поэтому полученное в линзе изображение называют действительным, в отличие от мнимых изображений, наблюдаемых в плоском зеркале.

Подтвердим сказанное построением (рис. 271, б). Для получения изображения точки А достаточно использовать два луча, ход которых после преломления в линзе известен. Луч 1 идет параллельно главной оптической оси и после преломления в линзе проходит через главный фокус. Луч 2 идет через оптический центр и не меняет своего направления после прохождения сквозь линзу. Точка А’, являющаяся пересечением прошедших линзу лучей и 2′, есть действительное изображение точки А. Заметим, что через точку А пройдет и любой другой преломленный луч идущий от точки А, благодаря чему энергия, излученная точкой А пламени свечи, будет сконцентрирована в точке А’.

Продолжим опыт. Поставим свечу на расстоянии d = 2F. Перемещая экран, мы увидим на нем действительное, перевернутое изображение пламени свечи, но размер его будет равен размеру пламени самой свечи (рис. 272). Сделайте сами построение изображения для этого случая.

Передвигая свечу ближе к линзе (F 0 является собирающей (положительной), а с F

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Оцените статью
Фотосайт о художественной фотографии